

The Abdus Salam International Centre for Theoretical Physics

1938-2

Workshop on Nanoscience for Solar Energy Conversion

27 - 29 October 2008

Quantum Dot Solar Cells: Semiconductor Nanocrystals As Light Harvesters

Prashant KAMAT

University of Notre Dame Department of Chemistry 235 Radiation Laboratory Notre Dame IN 46556-0579 USA

Meeting the Energy Demand

14 TW Challenge

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters

Prashant V. Kamat

Dept Of Chemistry and Biochemistry and Radiation Laboratory Dept. of Chemical & Biomolecular Engineering University of Notre Dame, Notre Dame, Indiana 46556-0579

Support: US DOE (BES)

Meeting the Energy Demand

Supplying Oil and Gas Demand Will Require Major Investment Millions of Barrels per Day of Oil Equivalent (MBDOE)

IF WE NEED A NEW ENERGY SOURCE FOR THE FUTURE I SUPPOSE WE COULD TRY DECCENS. HERE!

www.solarsales.com.au

World Oil Production vs. Discovery Source: Dr. C.J. Campbell

Can we address the clean energy challenge with Nanotechnology?

Our Research Focus

Quantum Dot Solar Cells

Tunable band edge

Offers the possibility to harvest light energy over a wide range of visible-ir light with selectivity

Hot carrier injection from higher excited state (minimizing energy loss during thermalization of excited state)

Multiple carrier generation solar cells. Utilization of high energy photon to multiple electron-hole pairs

Because of smaller dimensions charge separation and transport issues in nanostructure films need to be tackled

Metal/PbSeNC/Metal Sandwich Photovoltaic Cell

Gla

Semiconductor

Nanocrystals

Redox or Hole

Transport Laver

(-)

PbSe NC film, deposited *via* layer-by-layer dip coating

Short-circuit photocurrent (>21 mA cm⁻²) by way of a Schottky junction

EQE of 55-65% in the visible and up to 25% in the infrared region

Power conversion efficiency of 2.1%.

2. Polymer – Semiconductor Nanocrystal Hybrids

Hybrid Nanorod-Polymer Solar Cells

SCIENCE VOL 295, 2002 2425

3. Quantum Dot Sensitized Solar Cell (QDSSC)

Charge Separation in TiO₂/CdSe

Transient Bleaching Recovery of 3 nm CdSe Quantum Dots

Ex. 387 nm Β CdSe-MPA-TiO CdSe-MPA 0.00 0.00 -0.04 ₹ -0.04 A - 1 ps -**▽**-- 1 ps 35 ps -0.08 35 ps 400 ps 400 ps -0.08 -⊡— 1500 ps – 1500 ps 550 450 500 600 650 550 450 500 600 650 Wavelength, nm Wavelength, nm

Modulation of the charge injection process by controlling the particle size?

Photoexcitation of CdSe Quantum Dots

CdSe +hv \rightarrow CdSe (e_p +h_p) \rightarrow CdSe (e_s + h_s)

CdSe quantum dots of size 2.4 nm to 7,5 nm were excited with 387 nm laser pulse (130 fs)

As the particle size decreases from 7.5 nm to 2.4 nm, the first $({}^{1}S_{3/2}{}^{1}S_{e})$ excitonic peak shifts from 645 nm (1.92 eV) to 509 nm (2.44 eV).

Transient bleach corresponds to the first excitonic bleach

Robel, Kuno, Kamat, JACS 2007; 129, 4136

Electron transfer between CdSe and TiO₂

CdSe (es) + TiO₂ \rightarrow CdSe + TiO₂(e)

Analysis of Bleaching Recovery

 $\Delta A(t) = \Delta A(0) \times \exp[-(t/\tau)\beta]$

- where τ is the peak value of the characteristic lifetime

Normalized bleach

Size Dependent Quenching Phenomenon

Diameter	Eg	τ_{CdSe}	β_{CdSe}	t _{CdSe-TiO2}	$\beta_{CdSe-TiO2}$	k _{et}
[nm]	[eV]	[ps]		[ps]		[s ⁻¹]
7.5	1.92	2332	0.697	2281	0.755	9.58×10 ⁶
4.6	1.99	7224	0.474	4961	0.446	6.3 ×10 ⁷
3.5	2.18	4420	0.417	1117	0.475	6.7×10 ⁸
2.7	2.35	6739	0.457	357	0.505	2.65×10 ⁹
2.3	2.44	23119	0.51	83	0.493	1.2×10¹⁰

$\Delta A(t) = \Delta A(0) \times \exp[-(t/\tau)\beta]$

- where $\boldsymbol{\tau}$ is the peak value of the characteristic lifetime

$$1/\tau' - 1/\tau = k_{et}$$

Size Dependent Electron transfer between CdSe and TiO₂

Robel, Kuno, Kamat, JACS 2007; 129 pp 4136 - 4137

Linking Q-CdSe to TiO₂ particles

J. Am. Chem. Soc. 2006,128, 2385-2393

Photoelectrochemical behavior of Q-CdSe-TiO₂ films

I-V characteristics of (a) OTE/TiO₂ and (b) OTE/TiO₂/MPA/CdSe films. Electrolyte 0.1 M Na₂S. The filtered lights allowed excitation of TiO₂ and CdSe films at wavelengths **greater than 300 and 400 nm** respectively

Modification of TiO₂ Films with Different Size CdSe Particles

2.3nm 3.0nm 2.6nm 3.7nm

2.3nm 3.0nm 2.6nm 3.7nm

Photocurrent Response

Efficiency of Charge Injection vs. Light absorption

Can we employ the nanowire/nanorod architecture to improve the performance of quantum dot solar cells?

Recent advances

Nanowire dye-sensitized solar cells LAW, GREENE, JOHNSON, SAYKALLY, YANG Nature Materials 4, 455, 2005

Fast Electron Transport in Metal Organic Vapor Deposition Grown Dye-sensitized ZnO Nanorod Solar Cells

Galoppini, Rochford, Chen, Saraf, Lu, Hagfeldt, and Boschloo J. Phys. Chem. B; **2006**; *110* 16159

Electron transport in solar cells with ZnO-nanorod electrodes was about 2 orders of magnitude faster (30μ s) than ZnO-colloid electrodes

Mor, G. K. et al Use of highly-ordered TiO_2 nanotube arrays in dye-sensitized solar cells.

Nano Lett., 2006. 6, 215-218.

Martinson, A. B. F. et al., *ZnO nanotube* based dye-sensitized solar cells *ZnO* nanotube based dye-sensitized solar cells.

Nano Lett., 2007. 7, 2183-2187.

Leschkies, K. S et al *Photosensitization* of *ZnO* nanowires with CdSe quantum dots for photovoltaic devices.

Nano Lett., 2007. 7, 1793-1798.

Emission spectra of CdSe QDs (a, c) on glass and (b, d) chemically bound to TiO_2 nanoparticle films at 2 different sizes of QDs (2.7 and 3.7 nm). Excitation was at 480 nm.

Quantum Dot Solar Cells – Particle versus Tube Architecture

J. Am. Chem. Soc., 130 (12), 4007 -4015, 2008

Power conversion efficiency ~1%

Depositing CdS quantum dots on TiO₂ nanotubes

Scale bars: Top 500nm, bottom 50nm

$$(\text{TiO}_2) \xrightarrow{\text{Cd}^{2+}} (\text{TiO}_2)\text{Cd}^{2+} \longrightarrow \text{Wash} \xrightarrow{\text{S}^{2-}} (\text{TiO}_2)\text{CdS} \longrightarrow \text{Wash}$$

Photocurrent Response of TiO₂ (nanotube)CdS Films

Carbon nanostructures as conduits to transport charge carriers

Advantages

- High surface area
- Good electronic conductivity, excellent chemical and electrochemical stability
- Good mechanical strength

Goal

Effective utilization of carbon nanostructures for improving the performance of energy conversion devices

- To develop electrode assembly with CNT supports
- Improve the performance of light harvesting assemblies
- Facilitate charge collection and transport in nanostructured assemblies

....towards achieving ordered assemblies on electrode surface

SWCNT- TiO₂ composite films

- Mesoscopic TiO₂ films are extensively used in Dye-Sensitized Solar Cells
- A carbon nanotube support architecture can disperse the TiO₂ particles and facilitate charge collection and charge transport within the film.
- The first step is to design the SWCNT-TiO₂ network and test the feasibility of the composite system in solar cells

Kongkanand, A.; Domínguez, R.M.; Kamat, P.V., Single Wall Carbon Nanotube Scaffolds for *Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electrons.* **Nano Lett., 2007**. 7, 676-680.

Vietmeyer, F.; Seger, B.; Kamat, P.V., Anchoring ZnO Particles on Functionalized Single Wall Carbon Nanotubes. Excited State Interactions and Charge Collection. Adv. Mater., 2007, 19: 2935-2940

Electrophoretic Deposition of SWCNT on Electrode Surfaces

Photocurrent Generation CFE/TiO₂ versus CFE/SWCNT –TiO₂

Higher IPCE (increase of factor ~2) was observed for mesoscopic CFE/SWCNT-TiO₂ films

The results are indicative of better charge collection and transport provided by the SWCNT -Network

Nano Lett., 2007. 7, 676-680

tion

Dependence of TiO₂/SWCNT Ratio on the Photocurrent Generation

Increasing the TiO₂ concentration results in enhanced photocurrent as they are dispersed on SWCNT network.

At concentrations greater than 2 mg/cm² the beneficial effect of SWCNT disappears. Under these conditions. TiO_2 particles aggregate and the charge recombination dominates

Nano Lett., 2007. 7, 676-680

Where do we go from here?

Capping CdSe with an Electron Acceptor Shell

Electrophoretic deposition of Cluster films

e

OTE

e

е

h

C₆₀

CdSe

С₆₀

e

C_60

C₆₀

Red

Ох

CdSe

e

h

J. Am. Chem. Soc., 2008, 130, 8890-8891

Organized light harvesting assembly using carbon nanostructures

Graphene-Semiconductor Nanocomposites

ACS Nano, 2008, 2, 1487-1491

Summary

- Unique properties of quantum dots offer new opportunities to develop low-cost and high efficiency solar cells
- 1-D architectures are useful for designing next generation solar cells.
- Opportunities exist for carbon nanostructures to facilitate capture and transport of electrons in nanostructure semiconductor based solar cells.

Kamat, P. V. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion (Review) J. Phys. Chem. C, 2007. **111** 2834 - 2860.

Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters (Centennial Feature) J. Phys. Chem. C 2008, 112, in press

Researchers/Collaborators

Graduate students

Brian Seger (Chem. Eng.) David Baker (Chem. Eng.) Kevin Tvrdy (Chemistry) Clifton Harris (Chemistry) Matt Baker (Physics) Ian Lightcap (Chemistry) Philix Vietmeyer (Chemistry) Yanghai Yu (Chem. Eng.) Istvan Robel (Physics)

<u>Collaborators</u> Dr. K. G. Thomas (India) Prof. Fukuzumi (Osaka U.) Prof Ken Kuno (UND) Prof. K. Vinodgopal (IUN)

Post-Docs/Visiting Scientists Jin Ho Bang

Undergraduate students Pat Brown Chris Rodriguez David Riehm Rachel Staran

What will the future hold?

Over the last twenty years, the per-kWh price of photovoltaics has dropped from about \$500 to nearly \$5; think of what the next twenty years will bring.

http://www.theleveredge.com/images/isw_cartoon.gif